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Abstract: 

A solid-phase extraction method combined with liquid chromatography tandem mass spectrometry was developed to analyze 
simultaneously prostaglandins (PGE2, PGE3), prostacyclins (6-keto-PGF1α, Δ17-6-keto-PGF1α), resolvins (RvD1, RvD2) and 
leukotriene (LTB4) released into cL-15 medium by salmon liver cells. The optimal concentrations of different internal standards, 
for determining the analytical performance parameters, were selected by means of a uniform shell design. The limit of detection, 
quantification and recovery for the seven released pro- and anti-inflammatory biomarkers  into cL-15 medium ranged from 0.3-
1.0 ng/mL, 0.5-2.0 ng/mL and 83-127% respectively. The validated method was used to investigate the effect of polyunsaturated 
fatty acids (PUFA) on the production of prostaglandins, prostacyclins, resolvins and leukotriene by salmon liver cells. Statistically 
significant increases in the concentration of some eicosanoids were observed after adding arachidonic acid (PGE2, 6-keto-PGF1α 
and Δ17-6-keto-PGF1α) and eicosapentaenoic acid (PGE2, 6-keto-PGF1α, Δ17-6-keto-PGF1α and LTB4). Neither linoleic nor 
docosahexaenoic acid affected the production of both arachidonic acid or docosahexaenoic acid  derived metabolites. Although 
RvD1 and RvD2 were not detected, there was some indication that the production of RvD3 and RvD4 was preferred over RvD1 
and RvD2 after exposing the cells to different PUFA. 
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1. INTRODUCTION 

It is well known that arachidonic acid (AA, 20:4ω-6) is the 

substrate for two classes of enzymes, cyclooxygenases (COX) 

and lipooxygenases (LOX). The former enzyme is responsible 

for the production of 2-series prostaglandins, 2-series 

prostacyclins and 2-series thromboxanes and the latter enzyme 

is responsible for the biosynthesis of 4-series leukotrienes and 

hydroxyeicosatetraenoic acids (HETEs). Eicosapentaenoic acid 

(EPA, 20:5ω-3) exhibits a similar metabolism to AA, but it is 

metabolized by COX to 3-series prostaglandins, 3-series 

prostacyclins and 3-series thromboxanes and by LOX to 5-

series leukotrienes and hydroxyeicosapentaenoic acids. 

Docosahexaenoic acid (DHA, 22:6ω-3) and EPA can be 

converted to D-series and E-series of resolvins through the 

action of LOX respectively [1].  

AA-derived eicosanoids have pro-inflammatory effects and 

they are positively linked to arthritis [2], periodontal diseases 

[3] and also some diseases which are not considered to be of 

inflammato diseaseas Alzheimer’ssuchry etiology [4], 

cardiovascular disease [5] and cancer [6, 7] In contrast,.

metabolites derived from EPA and DHA, have anti-

inflammatory properties. Resolvins are a new family of lipid 

mediators that possess both potent anti-inflammatory and 

immune-regulatory properties [8]. The production of classic 

eicosanoids and resolvin D1 (RvD1) by tissue and cells of 

salmon and trout respectively has been demonstrated [9, 10]. 

In addition, RvD2 and RvD5 were observed in the former and 

the latter fish. 

Norway is a leading nation in fish research that consistently 

promotes fish welfare and implementation of 3Rs approaches 

(replacement, reduction, refinement) for the development of a 

sustainable aquaculture industry. In this regard, cell culture 

techniques are suitable substitute methods for animal 
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experiments that allow studying the synthesis of valuable 

biological substances and the biochemistry of cells.  

There is a growing body of evidence documenting the effective 

use of mammals and non-mammals cell lines for studying the 

production of pro- and anti-inflammatory biomarkers. A 

chronological overview of the application of different 

instrumental techniques for the analysis of eicosanoids in cell 

cultures is presented in Fig. (1). Radioimmunoassay (RIA) and 

enzyme immunoassay (EIA) are two types of immunoassay 

methods with comparable sensitivity and specificity. The rapid 

acceptance of RIA for the analysis of eicosanoids was mainly 

due to its high sensitivity, specificity and commercial 

availability. Nevertheless, the expense and hazards involved in 

the preparation and handling of radioactive materials led to a 

decline in the use of RIA and to an increase in the use of EIA 

in the middle nineties. The main drawbacks of EIA are the 

overestimation of the analytical concentrations due to cross-

reactivity and the detection of a single analyte per commercial 

kit, which would amount to very expensive costs when 

different eicosanoids are assessed quantitatively. Gas 

chromatography (GC) and liquid chromatography (LC) have 

been effective alternatives to overcome the disadvantages 

imposed by EIA. It is clear from Fig. (1) that over the course 

of time the use of LC has always outperformed GC for 

determining eicosanoids in cell cultures due to the inherent 

limitation of the latter to volatile and thermally stable 

compounds which are prepared by time-consuming 

derivatization process and which ensure that samples are 

prepared to prevent non-volatile components from entering 

the chromatographic system [11, 12]. The main disadvantage of 

LC coupled to UV-visible or diode array (DAD) detectors is 

the coelution of eicosanoids from the same category or family 

(in some instances isomeric eicosanoids) exhibiting the same 

spectrum. The problems associated with the use of 

spectrophotometric detectors (e.g. UV or DAD) were 

circumvented with the use of mass detectors (MS).  It is shown 

in Fig. (1) that LCMS and EIA have gained in popularity and 

surpassed the implementation of LC methods over recent 

years. An overview of the current year indicated that the trend 

is towards the implementation of LCMS instead of EIA as 

deducted from a remarkable number of references concerned 

with the quantification of eicosanoids in cell cultures by LCMS 

between 2015 and February 2018. 

Liquid-liquid extraction (LLE) and solid phase extraction 

(SPE) are the main methods used for the extraction of 

eicosanoids from cell culture media. The chronological 

overview revealed that SPE is preferred over LLE for the 

analysis of eicosanoids in cell cultures by LCMS.  (references 

associated with LLE or SPE are indicated in the supporting 

information by the letters L or S after the reference number 

respectively). 

The majority of published SPE-LCMS methods are focused on 

a limited number of eicosanoids. In addition, some of these 

methods involve repeated multiple steps without the addition 

of of internal standard(s) to compensate for losses of the 

analytical eicosanoids during sample treatement [13]. In cases 

where the internal standard was used, the main drawbacks have 

been the lack of selectivity and the splitting of the analytes and 

internal standards observed elsewhere [14]. 

The present article aims at developing a SPE method to extract 

eicosanoids and resolvins from cell culture media and further 

quantification by liquid chromatography tandem mass 

spectrometry (LC-MS/MS). The developed method is applied 

in the analysis of released PGE2, PGE3, 6-keto-PGF1α, Δ17-

6-keto-PGF1α, RvD1, RvD2 and LTB4 in culture media by 

 

Fig. (1). Overview of the application of different instrumental techniques for analyzing eicosanoids in cell cultures during the last 37 years. The 

year 2018 comprised January and February. The list of references for the time segments is provided as supporting information. 
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salmon liver cells exposed to AA, EPA, DHA or linoleic acid 

(LA, 18:2ω-6) that is the precursor of  AA. 

2. EXPERIMENTAL 

2.1. Reagents 

Prostaglandin E2 (PGE2, 99%), deuterated prostaglandin E2 

(PGE2-d4, 99%), prostaglandin E3 (PGE3, 98%), 6-keto 

prostaglandin F1α (6-keto-PGF1α, 98%), deuterated 6-keto 

prostaglandin F1α (6-keto-PGF1α-d4, 99%), Δ17-6-keto-

Prostaglandin F1α (Δ17-6-keto-PGF1α, 98%), resolvin D1 

(RvD1, 95%), resolvin D2 (RvD2, 95%), deuterated resolvin 

D2 (RvD2-d5, 95%), leukotriene B4 (LTB4, 97%) and 

deuterated leukotriene B4 (LTB4-d4, 99%)  were purchased 

from Cayman Chemical (Ann Arbor, MI, USA). Acetonitrile 

(99.8 %) and formic acid (98 %) were purchased from Sigma-

Aldrich (St. Louis, MO, USA). 2-propanol (HPLC grade, 99.9 

%) from Merck (Darmstadt, Germany). Chloroform (HPLC 

grade, 99.8%) was obtained from Merck (Darmstadt, 

Germany).  

A Millipore Milli-Q system was used to produce ultra-pure 

water 18 MΩ (Millipore, Milford, USA). Cis-5,8,11,14,17-

eicosapentaenoic acid (EPA, 99%), cis-5,8,11,14-

eicosatetraenoic acid (ARA, 85%), cis-9,12-octadecadienoic 

acid (LA, 99%) and cis-4,7,10,13,16,19-docosahexaenoic acid 

(DHA, ≥98%) were purchased from Sigma–Aldrich (Oslo, 

Norway).  

Leibovitz`s L-15 medium from Sigma-Aldrich (St. Louis, MO, 

USA). Fetal bovine serum (FBS, cat# 14-801F) was from 

BioWhittaker (Petit Rechain, Belgium). The glutaMaxTM 100× 

(Gibco-BRL, cat# 35056) was from Gibco-BRL (Cergy-

Pontoise, France).  

2.2. Isolation of the Salmon Liver Cells 

Liver cells were isolated from five Atlantic salmon (Salmo 

salar) with average body weight of 400-500 g (2 male and 3 

female, not sexually mature) obtained from HIB, University of 

Bergen. The experimental protocol was approved by the 

Norwegian Board of Experiments with Living Animal. 

Complete L-15 medium was prepared by mixing Leibovitz`s L-

15 medium with 1% glutamax, 1% antibiotika and 10% FBS 

(cL-15).  1 M CaCl2 and perfusion buffer containing 1.4 M 

NaCl, 0.067 M KCl and 0.09 M HEPES sodium salt at pH 7.4 

were prepared and used as stock solutions. Perfusion buffer 

containing EDTA was prepared by adding 1.11 g EDTA 

disodium salt to 20 mL of perfusion buffer and diluted to 200 

mL using ultra-pure water; pH was finally adjusted to 7.4. 

Perfusion buffer containing collagenase was prepared by first 

diluting 10 mL of perfusion buffer to 100 mL and adjusting 

pH=7.4. Then, 100 μL 1 M CaCl2 and 100 mg collagenase 

were added. Both buffers, EDTA and collagenase, should be 

freshly prepared.  

The fish were aestheticized by metacaine (MS222, 0.5 g/10 L) 

and the livers were perfused with a perfusion buffer containing 

EDTA at a flow of 4 mL/min until free of blood. Thereafter,  

 

the livers were digested with collagenase dissolved in above 

described stock perfusion buffer. The isolated cells were 

harvested in 10 mL 10% phosphate-buffered saline buffer 

(PBS buffer: 0.002 M KH2PO4, 0.02 M Na2HPO4, 0.03 M 

KCl and 0.14 M NaCl, pH 7.4), filtrated through a 100 µm 

mesh cell strainer,  washed twice in the PBS buffer and re-

suspended in cL-15 medium before the viability of the isolated 

cells was assessed. All centrifugations were performed at 50×g 

for 5 min. The viability of the liver cells was above 90% (range: 

90.8-94.4%). Sterile equipment and buffers were used to isolate 

the cells. 

2.3. Cell Cultures 

Culture plates were first conditioned by adding 1% laminin 

(500 μL laminin in 50 mL PBS) 1920 μL/well and kept 

overnight. Once the cells were obtained, the laminin solution 

was removed from the plates and 1.67×106 liver cells were 

added to each well. Four cL-15 medium solutions containing 

LA, ARA, EPA or DHA were prepared by attaching the fatty 

acids to FBS and diluting with cL-15 medium to a 

concentration level of 46 μM of fatty acid. A blank solution 

was made by adding FBS and ethanol (the solvent used to 

dissolved the fatty acids) and diluting with cL-15 medium.  The 

individual effect of the omega-6 (ω-6) LA, ARA and omega-3 

(ω-3) EPA, DHA and the blank on the production of classical 

eicosanoids (PGE2, PGE3, 6-keto-PGF1α, Δ17-6-keto-

PGF1α, LTB4) and resolvins (RvD1, RvD2)  was tested by 

culturing salmon liver cells in 1.5 mL of cL-15 medium, adding 

0.5 mL of fatty acid (or blank)  and incubating for 24 h at 9 °C 

in an incubator device (Sanyo Electric CO., Ltd., Osaka, 

Japan). The experiments were performed in triplicate. The 

medium was collected carefully without disturbing the cells 

attached to the bottom of the plate and stored at -80 °C until 

SPE-LC-MS/MS analysis.  

2.4. Optimal Concentrations of Internal Standards 

The procedure to select optimal concentrations of internal 

standards has been published elsewhere [15]. Eleven stock 

solutions were prepared by dissolving pure standards of PGE2, 

PGE3, 6-keto-PGF1α, Δ17-6-keto-PGF1α, RvD1, RvD2, 

LTB4, PGE2-d4, 6-keto-PGF1α-d4, RvD2-d5 and LTB4-d4 in 

cL-15 medium. The stock solutions were combined and diluted 

with cL-15 at the seven levels of concentrations suggested by a 

uniform shell design (Table 1). The experiments were 

performed in triplicate (7×3) and the resulting 21 mixtures 

submitted to SPE. The final reconstituted products from the 

SPE procedure were analyzed by LC-MS/MS and the response 

factor (RF) for every experimental point estimated by the 

expression: 

 
 

RF IS

A

A I

IS I
    Eq. (1) 

where [A] and [IS] represent the concentrations and IA and IIS 

represent the recorded signals for the analyte and internal 

standard respectively. The Eq. (1) allows estimating 21 RF 

values (7×3) for every analytical eicosanoid and resolving. The 

behavior of RF wasexpressed as a function of [A] and [IS] by 

using a full second-order polynomial model of the form: 
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o A A IS A ISIS
RF b b A b IS b A b IS b A IS         Eq. (2) 

where bo is the intercept, bA and bIS are the linear term 

coefficients, 2

Ab  and 2

ISb  are second order curvature effect 

coefficients and 
A ISb 

 is the first order interaction effect 

coefficient. The validity of the generated mathematical models 
(one model per analytical biomarker) was checked by 
monitoring the ratio lack-of-fit to pure error variances (aka F-
test) at a 95% confidence level. Further simplification of the 
generated full second-order polynomial models was considered 
by removing the less significant coefficients in Eq. (2). 

2.5. Extraction Procedure 

The 21 mixtures (7×3) prepared according to a uniform shell 

design (Table 1) were submitted to the following SPE protocol. 

An aliquot of medium (1 mL) containing the concentrations of 

analytes and internal standards indicated in Table 1 was 

combined with 175 µl of ethanol and 20 µl of acetic acid, 

vortex-mixed and applied on a SPE column (Agilent, ASPEC 

Bond Elute C18, 500 mg, 3 mL, USA) previously 

preconditioned with 2 mL of methanol and 2 mL of water. The 

cartridge was washed with 4 mL of distilled water and 4 mL of 

hexane. The analytes were eluted with 1 mL of hexane/ethyl 

acetate (1:2 v/v), collected into glass tubes and the solvent 

evaporated under a stream of nitrogen. The dried sample was 

dissolved in 70 μL of acetonitrile, vortex-mixed 30 s, 

centrifuged at 1620 ×g for 3 min and transferred to an auto 

sampler vial for LC-MS/MS analysis.  

2.6. Method Validation 

The proposed SPE-LC-MS/MS method was submitted to 

analytical validation after selecting the optimal concentrations 

of the internal standards by means of the mathematical models 

describing the behavior of RF as a function of [A] and [IS]. 

The validation parameters considered were: selectivity, limit of 

detection (LOD), limit of quantification (LOQ), linearity, 

analytical range and recovery.  

The selectivity of the method was assessed by comparing the 

extracted ion chromatograms from spiked and unspiked cL-15 

medium samples and establishing whether the proposed SPE 

method can determine the various biomarkers without 

interference from other components in the culture medium. 

The LOD and LOQ were determined by comparing the 

analytical signals at known low concentrations with those of a 

blank sample up to an analytical level where the analytical 

signals  are equivalent to three and six times the standard 

deviation of the blank sample (3×σblank and 6×σblank ) 

respectively. The analytical range was prepared by using 

medium spiked with six concentration levels of PGE2, PGE3, 

6-keto PGF1α Δ17-6 keto PGF1α RvD1, RvD2 and LTB4 

(0.0-200 ng/mL) and optimal levels of internal standards were 

selected by means of a uniform shell design and mathematical 

modelling (specifically 180 ng/mL PGE2-d4, 45 ng/mL 6-

keto-PGF1α-d4, 40 ng/mL RvD2-d5 and 30 ng/mL LTB4-

d4). These samples were submitted to the proposed SPE 

protocol and the relationship between IA/IIS versus [A] 

evaluated. The recovery of the method was determined by 

comparing the back-calculated against the nominal 

concentrations. 

2.7. Liquid Chromatography Ion-Trap Mass Spectrometry  

The LC-MS was an Agilent 1100 series LC/MSD trap, SL 

model equipped with an electrospray interface (ESI), a 

quaternary pump, degasser, autosampler, thermostatted 

column compartment and a variable-wavelength UV detector. 

A column C18 RP 250×4.6 mm, 5μm (Alltech, USA) kept at 

40 °C and injection volume of 20 μL were used. For the 

analysis of PGE2, PGE3, 6-keto-PGF1α, Δ17-6-keto-PGF1α, 

LTB4, PGE2-d4, 6-keto-PGF1α-d4 and LTB4-d4 the solvent 

system, operated in isocratic mode at 0.50 mL/min, consisted 

of acetonitrile with 0.1% formic acid (v/v) and the analysis 

time was 15 min. For the analysis of RvD1, RvD2 and RvD2-

d5 the solvent system, operated in gradient mode at 0.5 

mL/min, consisted of solvent A: water:acetonitrile:formic-acid 

(63:37:0.02 v/v/v) and solvent B: 2-propanol:acetonitrile 

(50:50 v/v) and was delivered as follows: 100% A (0-5 min), 

60% A (5-11 min), 10% A (11-13 min), 10% A (13-15 min), 

100% A (15-30 min).   

Table 1. Concentrations of pro- and anti-inflammatory biomarkers and corresponding internal standards used for modelling the 
response factor (RF) in the range of 0-200 ng/ml. Every experiment was measured in triplicate. 

Number of 

Experiment 

Concentration levels (ng/ml) 

6-keto-

PGF1α 

Δ17-6-

keto-PGF1α 
LTB4 PGE2 PGE3 RvD2 RvD1 

6-keto-

PGF1α-d4 

LTB4-

d4 

PGE2-

d4 

RvD2-

d5 

1 100 100 100 100 100 100 100 100.2 100.2 100.2 100.2 

2 50 150 50 50 150 50 150 13.8 13.8 13.8 13.8 

3 150 50 150 150 50 150 50 186.6 186.6 186.6 186.6 

4 150 50 150 150 50 150 50 13.8 13.8 13.8 13.8 

5 50 150 50 50 150 50 150 186.6 186.6 186.6 186.6 

6 200 0.5 200 200 0.5 200 0.5 100.2 100.2 100.2 100.2 

7 0.5 200 0.5 0.5 200 0.5 200 100.2 100.2 100.2 100.2 
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The ESI source was operated in negative ion mode with 

nitrogen as nebulizing and drying gas at 350 °C, 8 mL/min and 

50 psi. The ion optics responsible for getting the ions in the 

ion-trap such as capillary exit, skimmer, lens and octapoles 

voltages were controlled by using the Smart View option with a 

resolution of 13000 m/z/s (FWHM/m/z = 0.6-0.7). Complete 

system control, data acquisition and processing were done 

using the ChemStation for LC/MSD trap software, version 5.3 

from Agilent (Agilent Technologies, Inc., 2005). The areas of 

the extracted ion chromatograms for the different biomarkers 

were computed in ion counts per second (icps) and used as 

analytical signals. The recorded fragmentation patterns were 

m/z 351→ 333, 315, 271 for PGE2; m/z 349 → 331, 313, 269 

for PGE3; m/z 355→337, 319, 275 for PGE2-d4; m/z 

369→351, 315, 289, 323, 307, 205, 220, 149 for 6-keto-PGF1α; 

m/z 367→349, 331, 289, 269, 323, 313, 305, 298, 207, 185, 163 

for Δ17-6-keto-PGF1α; m/z 373→355, 337, 319, 275, 167 for 

6-keto-PGF1α -d4; m/z 375→141 for RvD1 and RvD2; m/z 

380→362, 344, 326, 282, 141 for RvD2-d5; m/z 335→317, 

273, 151, 129, 109 for LTB4; m/z 339→321, 277, 319, 293, 

275, 197,179, 153, 125 for LTB4-d4. 

2.8. Statistics 

Excel (Microsoft Office Excel 2013) was used for determining 
the adequacy of the mathematical regressions. The lack-of-fit 
(SSlof) and pure experimental (SSE) error sum of squares were 
calculated and divided by their corresponding degrees of 

freedom to obtain the variance components 2

lof   and 2

E   

respectively. The ratio 2 2/lof E   (Festimated) is computed and 

compared against the tabulated Fisher value (Ftabulated) at the 
95% confidence level to judge the linearity of the proposed 
models. 

3. RESULTS AND DISCUSSION 

3.1. Selection of the Optimal Concentrations of Internal 

Standards 

The RF for the different biomarkers was estimated by Eq. (1) 

and modelled as a function of the analyte and corresponding 

internal standard concentrations by using polynomial models 

(Eq. (2)). The computed regression models  for PGE2, PGE3, 

6-keto-PGF1α, Δ17-6-keto-PGF1α, RvD1, RvD2, LTB4 and 

their corresponding internal standards are presented in Fig. (2). 

3.1.1. Internal Standard for Prostaglandins (PGE2 and 
PGE3) 

The concentration plots for PGE2-d4 vs PGE2 (Fig. 2a) and 

PGE2-d4 Vs. PGE3 (Fig. 2b) showed three well differentiated 

regions (indicated in blue, red and green) along the PGE2-d4 

axis where the RF remains constant over the entire PGE2 

range. By considering simultaneously the magnitude of RF in 

both plots (Figs. 2a-b) for PGE2 and PGE3, it is possible to 

conclude that a concentration of PGE2-d4 in the range of 175-

185 ng/mL is optimal for obtaining a constant RF with the 

lowest relative standard deviation (~11%).  Consequently, 180 

ng/mL of PGE2-d4 is chosen for further analysis of PGE2 

and PGE3 in cL-15 medium. 

 

 

Fig. (2). Response factor (RF) as a function of the analyte 

concentration (horizontal axis) and internal standard concentration 

(vertical axis) for the pro- and anti-inflammatory biomarkers released 

in cL-15 medium. The axis are expressed in ng/mL and the values on 

the contours represent the mean ± standard deviation of the RF 

(n=3). a) PGE2-d4 vs PGE2, b) PGE2-d4 vs PGE3, c) 6-keto-

PGF1α-d4 vs 6-keto-PGF1α, d) 6-keto-PGF1α-d4 vs Δ17-6-keto-

PGF1α, e) RvD2-d5 vs RvD1, f) RvD2-d5 vs RvD2 and g) LTB4-d4 

vs LTB4.  

3.1.2. Internal Standard for Prostacyclins (6-keto-PGF1α 
and Δ17-6-keto-PGF1α)  

The contour plot in Fig. (2c) showed an optimal concentration 

region between 40-200 ng/mL of 6-keto-PGF1α-d4 over the 

entire 6-keto-PGF1α range. The contour plot in Fig. (2d) 

revealed three different RF values in different concentration 

regions of Δ17-6-keto-PGF1α that were   independent of the 

concentration of internal standard (6-keto-PGF1α-d4). The 

Δ17-6-keto-PGF1α concentration regions were 0.5-22 ng/mL 

(3.32±0.23), 22-148 ng/mL (2.50±0.29) and 148-200 ng/mL 

(1.59±0.26). Based on both contour plots (Figs. 2c-d)), a level 

of 45 ng/mL of 6-keto-PGF1α-d4 was selected for the analysis 

of 6-keto-PGF1α and Δ17-6-keto-PGF1α produced by salmon 

liver cells in cL-15 medium. 
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3.1.3. Internal Standard for Resolvins (RvD1 and RvD2)  

Reduced models with equivalent number of coefficients were 

obtained for the resolvins (Table 2).  For RvD1, the RF was 

constant (1.15±0.12) at concentration levels below 20 ng/mL 

of RvD2-d5 (Fig. 2e). However, at this particular level the 

chromatographic peak for RvD2 exhibited a noisy baseline. 

For RvD2, the RF was constant (1.88±0.14) in the range of 40-

110 ng/mL of RvD2-d5 (Fig. 2f). It was decided that 40 

ng/mL of RvD2-d5 (representing RF values of 1.06±0.06 and 

1.84±0.15 for RvD1 and RvD2 respectively) was an optimal 

concentration level for the analysis of released resolvins in cL-

15 medium by salmon liver cells. 

3.1.4. Internal Standard for Leukotriene (LTB4) 

The concentration plot LTB4-d4 vs LTB4 (Fig. 2g) revealed 

that the major variation of RF was along LTB4–d4 axis. Three 

concentrations of LTB4-d4 (30, 70 and 190 ng/mL) rendered 

RF values (1.28±0.17, 0.78±0.17 and 0.79±0.17 respectively) 

that remained constant in the range of 0.5-200 ng/mL of LTB4 

(Fig. (2g). The lowest internal standard concentration (30 

ng/mL) was selected for the analysis of LTB4 in cL-15 

medium. 

3.2. Analytical Performance 

The proposed SPE-LC-MS/MS was submitted to analytical 

validation by using the previously selected optimal 

concentrations of internal standards (180 ng/mL PGE2-d4, 45 

ng/mL 6-keto-PGF1α-d4, 40 ng/mL RvD2-d5 and 30 ng/mL 

LTB4-d4).  

The analysis of the extracted ion chromatograms from spiked 

and unspiked cL-15 medium samples revealed that the various 

fragmentation patterns were clearly distinguished from each 

other and that the SPE protocol is highly selective towards the 

non-deuterated and deuterated classic and non-classic pro- and 

anti-inflammatory biomarkers.   

The linearity of the method was assessed by preparing 

calibration mixtures of PGE2, PGE3, 6-keto-PGF1α, Δ17-6-

keto-PGF1α, RvD1, RvD2, LTB4 in cL-15 medium in the 

range of 0.0-200 ng/mL and containing constant amounts of 

PGE2-d4 (180 ng/mL)  6-keto-PGF1α-d4 (45 ng/mL) RvD2-

d5 (40 ng/mL) and LTB4-d4 (30 ng/mL). The proposed 

regression models for the various biomarkers (Table 2) 

exhibited consistently lower experimental Fisher ratios than the 

tabulated value at the 95% confidence level with 4 and 12 

degrees of freedom (< F4/12=3.259), hence the mathematical 

models described in Table 2 can be regarded as linear in the 

range of concentration of 0.5-200 ng/mL for PGE2, PGE3, 

RvD1 and RvD2, 1.5-200 ng/mL for 6-keto-PGF1α, 2.0-100 

ng/mL for Δ17-6-keto-PGF1α and 0.5-150 ng/mL for LTB4. 

The narrower concentration ranges for Δ17-6-keto-PGF1α 

(2.0-100 ng/mL) and LTB4 (0.5-150 ng/mL) are the result of 

variation in their RF towards high concentrations which in turn 

prevent the modelling of these system as linear function of the 

signal in the whole range of analytical concentrations (0-200 

ng/mL).  

The LOD, estimated by diluting successively a 1.0 ng/mL cL-

15 medium solution of the analytical prostaglandins, resolvins 

and leukotriene and determining the confidence with which it 

is possible to detect a concentration larger than that in a blank 

of cL-15 medium with a statistical power of 84%, were 0.3 

ng/mL for PGE2, PGE3, RvD1, RvD2 and LTB4, 0.8 ng/mL 

for 6-keto-PGF1α and 1.0 ng/mL for Δ17-6-keto-PGF1α. The 

LOQ values were encompassed in the dynamic range as the 

minimum concentration of spiked cL-15 medium yielding an 

analytical signal equivalent to 6×σblank that can be quantified 

with acceptable level of precision and accuracy. The recovery 

values, estimated as the ratio between back-calculated and the 

nominal concentrations, varied between 92-100% for PGE2, 

92-106% for PGE3, 88-111% for 6-keto-PGF1α, 83-127% for 

Δ17-6-keto-PGF1α, 89-127% for RvD1, 80-121% for RvD2 

and LTB4, with average values close to 100% in all cases 

(Table 2). 

Table 2. Statistical validation for the RF-models in Fig. 2 and validation parameters in cL-15 medium.   

 Parameter 
PGE2 

Fig. 2A 

PGE3 

Fig. 2B 

6-keto-PGF1α 

Fig. 2C 

Δ17-6-keto-PGF1α 

Fig. 2D 

RvD1 

Fig. 2E 

RvD2 

Fig. 2F 

LTB4 

Fig. 2G 

RF 

Modelling 

SSr 0.389 (17) 198.46 (16) 0.600 (14) 10.636 (14) 0.696 (14) 1.376 (14) 2.715 (17) 

SSE 0.324 (14) 197.09 (14) 0.587 (12) 10.019 (12) 0.634 (12) 1.056 (12) 2.157 (14) 

SSlof 0.066 (3) 1.375(2) 0.013 (2) 0.617 (2) 0.062 (2) 0.320 (2) 0.558 (3) 

Festimated 0.944 0.0488 0.137 0.369 0.590 1.819 1.206 

Ftabulated 3.344 3.739 3.885 3.885 3.885 3.885 3.344 

Validation 

LOD (ng/ml) 0.3 0.3 0.8 1.0 0.3 0.3 0.3 

LOQ (ng/ml) 0.5 0.5 1.5 2.0 0.5 0.5 0.5 

Recovery (%) 92-100 92-106 88-111 83-127 89-127 80-121 80-121 

Range ng/ml) 0.5-200 0.5-200 1.5-200 2.0-100 0.5-200 0.5-200 0.5-150 

Ftabulated at the 95% confidence level. Degrees of freedom in parentheses    
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3.3. Stimulated Production of Prostaglandins, Resolvins 

and Leukotriene in Salmon Liver Cell Cultures by PUFA  

The validated SPE-LC-MS/MS was used for the simultaneous 

determination of prostaglandins, prostacyclins, leukotriene and 

resolvins generated by salmon liver cells in cL-15 medium 

exposed to four different ω-6 (LA and AA) and ω-3 (EPA and 

DHA) PUFA.  

The graphical representations of the mean concentrations of 

the generated eicosanoids with their corresponding 95% least 

significant intervals (Fig. 3) revealed a statistically significant 

increase in the production of PGE2, 6-keto-PGF1α, Δ17-6-

keto-PGF1α and LTB4 in salmon liver cell cultures containing 

EPA. Arachidonic acid (AA) increased the production of these 

eicosanoids but LTB4. The production of eicosanoids was not 

affected by exposing the salmon liver cells to LA or DHA.  

RvD1, RvD2, RvD3 and RvD4 are isobaric molecules (MW= 

376) and their formation proceed through two different lipid 

mediators, more specifically 7S,8S-epoxy-17S-hydroxy-DHA 

for RvD1, RvD2 (quantitatively analyzed in this work) and 

4S,5S-epoxy-17S-hydroxy-DHA for RvD3, RvD4 [5]. The 

mass spectrometry base peaks in negative mode for RvD1 and 

RvD2 (m/z 375141) and for RvD3 and RvD4 (m/z 

375147) constitute a practical basis for their discrimination  

 

[16]. These base peaks were extracted from the chromatograms 

of analyzed medium and the results did not show the presence 

of the fragment m/z 141 (Fig. 4a). However, a significant peak 

at m/z 147 with an intensity similar to the internal standard 

(RvD2-d5 at m/z 380141) was observed (Fig. 4b). 

Unfortunately, the standards RvD3 and RvD4 were not 

characterized in the present targeted analysis. However, these 

results might indicate that the major metabolites of DHA in 

salmon liver cells are RvD3 and RvD4, and not RvD1 and 

RvD2 (as initially assumed in the present work).  

Lack of RvD1 and RvD2 production by salmon cells was 

unexpected, considering that a previous work on salmon tissue 

demonstrated their production in salmon tissue [10]. These 

apparently contradictory results might indicate that RvD1 and 

RvD2 are metabolized locally which emphasized their 

paracrine signaling mechanism. 

The observed increase in PGE2, 6-keto-PGF1α indicates that 

during the incubation period, AA is incorporated into the cell 

membrane resulting in the release of AA into the cells and the 

subsequent synthesis of AA-derived eicosanoids. The increased 

levels of PGE2 and 6-keto-PGF1α compared to the unaffected 

levels of LTB4 produced after exposing the cells to AA, are 

indicative that the added ω-6 PUFA is basically enrolled in  

 

 

Fig. (3). Production of eicosanoids by salmon liver cells exposed to linoleic (LA), arachidonic (AA), eicosapentaenoic (EPA) and 

docosahexaenoic (DHA) fatty acids and their significance (p < 0.050). 
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COX pathway instead of LOX pathway.  The increased 

production of the EPA metabolite, Δ17-6-keto-PGF1α, after 

exposure to AA was unexpected. Some researchers has argued 

that AA can stimulate in some degree the production of Δ17-6-

keto-PGF1α in human endothelial cells [17]. In addition, 

increased levels of EPA-metabolites have also been observed 

in skin cells from dogs fed ω-6/ω-3 diet ratios of 5/1 and 10/1 

[18].  

The enhanced production of LTB4 by the presence of EPA 

confirms that EPA is incorporated into the by-layer 

phospholipid cell membrane after releasing AA in a dose- and 

time-dependent manner [19,20]. At the first 24 h, EPA is 

incorporated into the cell membrane at the expense of AA that 

is released and converted into AA-derived eicosanoids.  

The significant increasing in the production of Δ17-6-keto-

PGF1α compared to PGE3 in salmon liver cell cultures 

exposed to EPA could be explained on the basis that PGH3 

synthase (the common substrate for the production of both 

Δ17-6-keto-PGF1α and PGE3) has more affinity towards the 

production of the prostacyclin. 

CONCLUSIONS 

The validated SPE protocol in conjunction with LC-MS/MS is 

a reliable strategy for the quantitative monitoring of pro- and 

anti-inflammatory biomarkers released in culture media by fish 

cells exposed to different PUFA. The SPE protocol 

demonstrated to be an effective tool for understanding the 

impact of PUFA on  the production of prostaglandins, 

resolvins and leukotriene and for gaining insights into the 

potential mechanism behind the production of lipid mediators 

derived from AA, EPA and DHA.  The stimulated production 

of prostaglandins, resolvins and leukotriene in cell cultures 

after exposure to AA and EPA indicated that these particular 

PUFA can be incorporated into salmon liver cells after 

releasing EPA and AA from the membrane, which in turn 

promote the production of Δ17-6-keto-PGF1α and LTB4 

respectively. The results seem to indicate that the production 

of RvD3 and RvD4 is preferred over RvD1 and RvD2 in 

salmon liver cells. However, this conclusion is derived from 

qualitative analysis of the experimental chromatograms. Hence, 

it is advisable to generate quantitative models for RvD3 and 

RvD4 to substantiate this observation. 
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