A study of the Global *In Vivo* Gene Expression Pathway Profile in Mycobacterium bovis infected cattle from Mexico.

Mayorquin Luna GA^{1,2} and Guerrero GG^{1,*}

¹Universidad Autónoma de Zacatecas. México. Lab de Inmunobiologia. Unidad Académica de Ciencias Biológicas. UAZ.

^{1,2}Instituto Politécnico Nacional. Zacatecas, Unidad Zacatecas. Zacatecas, Zac. México

Abstract:

Bovine tuberculosis is serious animal health and economic problem worldwide. Intense efforts have been invested in the search of biomarkers to define the spectrum of disease progression and also as diagnostic-prognostic. Most of the studies addressing this issue have been made after in vitro PBMCs stimulation with *M. bovis*. Furthermore, some data have been found after *M. bovis* infected the calves, followed by *M. bovis* BCG vaccination, with some promising results. But still there are many questions that should be answered from in vivo studies. Thus, in the present work we focused to determine the global *in vivo* gene expression pathway of *M. bovis* infected cattle from the north stares of Mexico. From the analysis of data, we found that there are a set of genes modulated up (around 280 genes) and down (around 580 genes) (> 2 SD) that were influenced by the *M. bovis* infection. From the functional analysis using Reactome database, with those genes most significantly regulated up and down (P < 0.05) (n= 27 genes), we found that the pathways relate to innate immune response, such as IFN $\alpha\beta$; IL-6; [Toll-like] receptors; chemokine receptors, TRAF6 mediated induction of NFK β and NOTCH signaling; adaptive immunity (B and T cell signaling); IL17 and IL-10. In addition to these findings, we observed that natural transcriptional printing of *M. bovis* is also in other pathways such as MAP kinases cascade activity (autophagy), metabolism (inositol, lipids, glycogen), cell cycle, signal transduction and apoptosis. By summarizing the result, this is a first analysis of the in vivo transcriptional gene pathway profile of bTB in Mexico. We think that might be possible to further develop a scanning chip for diagnostic based on the mostly printed signatures of *M. bovis* in cattle.

Publication History: Received: 10 October 2018 | Revised: 12 December 2019 | Accepted: 09 January 2019

Keywords:

M. bovis, gene expression, signalization, immune, biochemical pathways, transcriptional profile, Th1 type, Th17 induced expression.

INTRODUCTION.

Bovine tuberculosis (bTB) is a chronic disease of cattle, caused by Mycobacterium bovis, a gram-positive bacteria, member of the Mycobacterium tuberculosis complex and the Mycobacteriaceae family [1, 2]. Bovine tuberculosis is of zoonotic importance and constitutes in the reemergence of serious health problem [3-5]. It estimated that more than 50 million cattle are infected with M. bovis, causing economic losses in agriculture and livestock [6,7]. M. bovis is transmitted mostly by aerosol (80 -90%) but it can be transmitted by oral route ("meat or unpasteurized milk) [8,9]. The risk of transmitting bTB to humans in Mexico might be explained by the high prevalence of this disease in cattle (16%), the manipulation of infected animals (a common practice in Mexico) and the consumption of the unpasteurized milk. According to a recent report from the Binational Council Organization -EUA (SAGARPPA., 2012); 82% of National territory consist of a prevalence of

*Address correspondence to this author at the Lab de Inmunobiologia. Unidad Académica de Ciencias Biológicas. UAZ. Campus II. Av Preparatoria S/N. Col. Agronómicas. Zacatecas, Zac. México. C.P. 98066; Tel +52 4921564376; E-mails: gloriaguillermina@uaz.edu.mx; gloguerrero9@gmail.com 0.5% of bTB except in the zones of dairy livestock; while there are other regions where the prevalence is unknown or even higher [10-11]. It is more frequent to find M. bovis in humans than M. tuberculosis in livestock like cattle [8, 13]. In general, we know that cellular immune response play a key role against pathogenic mycobacteria, characterized by interferon-gamma (IFN-y)production derived from the CD4+ T cells [14-17], This cytokine enable to infected macrophages to maintain an activated state [18, 19]. A better understanding of protective anti-mycobacterial cellular immune responses is required in order to develop more effective vaccines and diagnostic tests [17, 20, 21]. In fact, there are very few reports about to find immunological correlates of protection which would improve vaccine development [21, 22]. Vaccination of cattle might offer a long-term solution for the control of the disease and for the development of a bTB vaccine [23, 24]. This development should complement BCG since it has been observed that BCG vaccine can compromise the specificity of the intradermic

Mesford Publisher Inc

Office Address: Suite 2205, 350 WEBB DRIVE, MISSISSAUGA, Ontario L5B3W4, Canada; T: +1 (647) 7109849 |E: cab@mesford.ca, contact@mesford.ca https://mesford.ca/journals/cab/

tuberculin tests as well as the blood test based in tuberculin specificity [21, 24]. Upon its introduction as the only official BCG vaccine to human tuberculosis in the 20's and 30's, a great number of experiments and tests were performed with BCG in cattle from different countries such as United States, New Zealand, etc [25]. The reports were promising at the beginning, however as the time passed, it was found that the grade of protection induced by BCG were highly variable from 0 to 0.7%, which also mirrored in a human infected with M. tuberculosis [26-31]. The quantitative tools that measure changes in the expression of genes have advanced enormously due to the necessity of finding more effective, sensible and faster methods and that make it possible to determine more integrated response of the interaction of pathogen [32-37]. Two recent studies demonstrated the potential of the microarray technology as a molecular diagnostic method but also it allows to identify biomarkers with therapeutic potential in human TB [38] or in bovine Tuberculosis [39-46]. Aranday-Cortes et al., 2012 [47] using first a mouse model of aerogenically M. bovis infection to predict biomarkers of bTB ante-mortem diagnosis of bTB, selected the most strong upregulated genes expressed from the whole transcriptome of lung and spleen cells. From the 14 genes most upregulated in mice (granzyme A and B, cxcl19, IL-22), evaluated them after antigen-stimulated PMBCs from uninfected cattle and naturally infected cattle. They found that these biomarkers including also cxcl10, are the most expressed after PPD-stimulation in infected cattle versus naïve uninfected cattle cells [47]. Despite of this wealth of data, the spectrum of bovine tuberculosis (active vs latent), the natural transcriptional printing of *M. bovis*, remains to be determined. In the present work, we are reporting a set of genes that are mostly regulated up and down (> 2 SD) and they impact importantly in interferon alpha/bet signaling, cytokine receptor signaling, STAT-2, TLRs signalization cascade and in other aspects of the innate and adaptive immune system. Moreover, it was found that transcriptional printing of M. bovis influence also other important pathways such as metabolism (carbohydrates, inositol), proteasome, RNA transcription initiation, caspases cascade activation, FGFR binding and activation. The genes that are involved in each of the mentioned pathways might serve to explore an scanning chip for diagnostic, prognostic in bovine tuberculosis.

MATERIALS AND METHODS

Animals

Cattle for the TST field tests. Negative (no reaction to any of the field test); positive (TST+`) to field test (caudal and comparative cervical) and confirmed by bacteriological and histopathological analysis. Reactor (TST+).

Blood from cattle from different regions of the state of Zacatecas were collected based in the selection of negative and positive bovines to the tuberculin skin test (TST). TST- to the caudal anus and the comparative cervical test was considered Negative while TST+ to both, was considered a reactor and later on confirmed by bacteriological and histhopathological exams as positive

Blood Collection

Blood from positive and negative animal were collected in tempus blood (Thermofisher Scientific). Briefly, after animal were selected following the inclusion criteria described above. Three ml of blood were collected and mixed vigorously and then stored stored to -86^aC until use.

RNA Extraction

RNA extraction was made using a KIT and following the manufacturer instructions (AMBION, Life technology). Briefly, the cap of the tube was retired. The blood with the solution was transferred to a falcon tube of 50 ml. 3 ml of buffer phosphate (PBS steril) (Gibco, Co). Then, it was mixed vigorously and centrifuged to 3,000g (rfc)/4ªC/30 min. Then, the supernatant was discarded. The falcon tubes were inverted for 2 min. 400 µl of solution A (resuspension buffer) was added and resuspended with a tip. Then, a brief vortexing was applied. The samples were then kept on ice. A RNA column (or purification filter)(PF) was set in a Eppendorf tube and it was added 100 µl of solution B (washing buffer 1). Then the 400 µl of the resuspended solution was passed through the RNA column and centrifuged for 30 seconds to 16,000 g (RFC)/4°C. The PF was transferred to a new Eppendorf tube of 2 ml, discarding the supernatant. 500 µl of solution B was added, then centrifugated for 30 sec/16,000 g (RFC)/4°C. This step was repeated again but with a new Eppendorf tube and with solution C (500 µl of washing buffer 2)/30 sec/16,000 g (RFC)/4°C. This step was repeated, transferring each time to a new Eppendorf tube but then it was incubated for 5 min. After this time, it was centrifuged for 30 sec/16,000 g (RFC)/4°C, discarded the supernatant and once more time it is washed with solution C, centrifuged and it discarded the supernatant. The membrane of the PF was dried by centrifugation at 30 sec/16,000 g (RFC)/ 4°C. The PF was transferred to another Eppendorf tube of 2 ml free of RNAsas. The filtrate was discarded. 500 µl of solution D (elution buffer) was added to the PF and then centrifuged to recover the RNA eluted at 30 sec/16,000 g (RFC)/ 4°C. Then the PF was transferred to a 2 ml eppendorf tube free of RNAses. The eluted volume (100 100 µl) were passed once again through the same PF and centrifuged for 2 min/16,000 g (RFC)/4°C. Finally, the PF was discarded. The recovered RNA is transferred to a new tube of 2 ml free of RNAses, carefully. Storage to -20°C (to be used in days) or -80°C was stored until use. The integrity of the RNA was recorded in agarose gel 1% in TAE (prepared with steril MQ H2O)/and syber safe (30 ml/2 µl) and visualized in the Chemidoc (BioRad, Co).

Microarray Preparation

cDNA was prepared from RNA using the KIT (first strand cDNA labeling KIT (Invitrogen) (Unit of Microarray, IFC-UNAM, Mexico City) incorporating g aminoalil-dUTP, using an alkaline reaction and quantified with Nano-drop (Thermofisher scientific). In general, RNA was with oligo DT (1,0 μ l), dH20 (15,0 μ l total), incubated for 5 min at 70°C followed to put on ice. Thereafter, enzyme buffer (5,0 μ l), dNTPs (1,5 μ l), dH2O (2,5 μ l) and enzyme M-MLVRT (1,0 μ l) were added for a total volume of 25,0 μ l. The final mixture is

homogenized smoothly with the tip and then spin off to concentrate the sample, Finally, it was incubated for one hour to 42°C and stored at -30°C until use. The microarray preparation was made accordingly to a protocol used by the Unit of Microarray in IFC -UNAm Mexico, City. The chip M32K_10_23 and the hybridization were made with equimolar quantities of label fluophores, -Alexa555- for the control, while -Alexa647- label for the positive sample.

Figure 1. Global gene expression data microarray of the natural infected cattle *M. bovis* infected cattle from Mexico (a-b) analyzed using statistical analysis (Microarray Unit, IFC - UNAM. Mexico).

Statistical Analysis

For the microarray analysis, the program Gene arise was used. Up and down regulated genes were filtered for two cutoffs, one for Z-Score higher than 1.5 and the second, with Z – Scores higher than 2 (> 1.5 and 2.0 SD) (P < 0.05).

RESULTS

A Group of Genes are up and down Regulated in *M. bovis* Infected cattle from Mexico

After microarray determination (Materials and Methods), a first statistical analysis from around 23 000 genes), rendered a pool of genes that were modulated (up or down) in the cattle infected with *M. bovis* from Mexico (Figure **1a-b**) in agreement with data from in vitro studies [40], we found that effectively, most of the genes are down regulated genes than up- regulated (Figure **1a-b**). Thus, in positive M. bovis cattle from Zacatecas or from Coahuila State, a total of 589 or 549 genes were down regulated (> 2 fold change, p< 0.05) while reactor (TST +/-) cattle from Zacatecas, 644 genes were down regulated (> 2 fold change, p< 0.05).

Next, we aimed to investigate the most modulated genes from these set of genes among the three groups of animals (Materials and Methods), we choose a range of most up regulated and most down regulated accordingly to the Z scores values. In first term, it was selected a Z score (fold change) from 2.9 to 4.3 (n= 27) equivalent to > 2 fold change (p< 0.05) (Figure **2A-C**) whereas most of the genes down regulated were from -4.5 to 6.0 (n= 27)(> 2 fold change, p< 0.05) (Figure **2A**- **C**). Searching in the NCBI database, it was found the identity of genes added either up or down regulated (Table **1A**). In general, these genes encode a wide variety of activities like binding to proteins, carbohydrates, metal-ion, DNA binding as well as for enzymatic activities (Table **2A**). Furthermore, we compared these data (Figure **2B**) with those obtained after analysis of gene expression pattern from animals that were just TST+/-, named as "reactive" or "suspicious" (Figure **2A**, Table **2A**). The genes encode also primarily functions of protein and DNA binding, transcription factors, enzyme activities and peptide-ligand binding receptors (Table **2B**).

Table 1. Most of genes from cattle infecred with *M. bovis* from Mexico are down regulated.Data represent statistical analyses of genes that are significantly (P < 0.05) modulated with a Z score > 2 SD. A, cattle TST (+); B, cattle (+/-) from Zacatecas, State and C, cattle TST(+) from Coahuila, State. Mexico

	С	Up	Down	
А	Positive Zac	272	583	
В	Suspected	278	644	
С	Positive Coah	384	549	

Interestingly and in agreement with those data reported in vitro assays, one the most affected pathways are the cytokine and /or interleukin signalization (Figure **2A**, table **1A**). More importantly, we found that among the list of 27 analyzed genes, a set of genes (FGF 23, Pgm2l1, Dgat 2, Nudt4, Pde6g, Cpsf1), being the most predominant FGF (Fibroblast growth factor that highly influenced different key pathways (Figure **2A**). Likewise, most of the genes strongly up regulated (n= 27) (3 to 4.3 fold change)(Figure **2C**) from Coahuila State, Mexico while the genes that are mostly down regulated (n= 27)(-4.5 to 6.0) are those genes that encode also protein, DNA, RNA binding transcription factors, enzyme activities, frizzled binding and peptide-ligand-binding receptors (Figure **2C**).

Functional Analysis of the Group of Genes up and down Regulated in *M. bovis* Infected Cattle from Mexico.

To even further analyze the functionality of these genes, we used Reactome database [48] in order to pinpoint the different pathways that are influenced by the modulation of these genes in the M. Bovis transcriptional printing (Figure 3I-III, A-B). First, as shown in Figure 3I (reactor, TST (+/-) cattle from Zacatecas State, the most influenced pathways were inositol phosphate (p-value of 0,007), photo-transduced cascade (0,028); glycogen synthesis (p-value of 0,041); triglyceride biosynthesis (p-value of 0,36); PI-3K cascade (p-value of 0,048; 0,031) (Figure 3I, A-B). Interestingly, most down-regulated genes represented by Egr1, Ip6k2 and Kpna1 influenced key host immune response such as interferon alpha-beta signaling, interferon signaling, cytokine signaling in immune system, while other important pathways was also printed by M. Bovis infection like Fah (Phenylalanine and tyrosine metabolism)(pvalue of 0,084); Ngb (intracellular oxygen transport); Cul4a (DNA damage record, neddylation)(p-value of 0,05; 0,089), Lims1 (Regulation of cytoskeleton)(p-value of 0,016) (Figure

Fig. (2). Heat maps constructed (Graph Pad 7-0 software) from the Z scores of the genes most Up and Down regulated (< 2 SD)(P < 0.05) from TST (+/-) (**A**), positive (**B**) cattle from Zacatecas and positive cattle from Coahuila State (**C**) Mexico.

 Table 2. Data from NCBI bank of genes most Up and Down regulated accordingly to Z scores and significant (P < 0.05) as described in material and methods. in reactor cattle TST(+/-)</th>

 (A) and positive cattle TST(+) from Zacatecas State, Mexico (B); positive cattle TST(+) from Coahuila State, Mexico (C).

Symbol	Gene	Localization	A	Function	Process	Fold
gene	name					change
Rn18s	18 S ribosomal RNA	nucleolus/ribosome		Serves as the precursor for the 18 S, 5.8S and 28S rRNA	Serves as the precursor for the 18 S, 5.8S and 28S rRNA	4,712421
Rny1	Rna Y1 small cytoplasmic Ro associated	nucleus/chromosome		DNA binding	DNA replication initiation; nuclear DNA replicaton	4,137724
Ccdc106	Colled coll domain containing 106	cytosol/nucleus		molecular function	biological process	3,516355
Pde6g	Phosphodiesterase 6 G	cytosol/membrane		Hydrolase activity	Signaling by Wn1; pos reg of G protein and EGF receptor sig	3,411287
Col6a1	collagen alpha 1(VI) chain	collagen trimmer/ext matrix/extracell sp	bace	protein heterodimerization	extracellular matriz organization: collagen formation	3,256749
Dofer14	Defensionalpha 14	cytoplasm/cytoskeleton/membrane		protein binding	cargo transport	3,211959
Stmp2	Stathmin 2	extracellular space/extracellular region	toploom	protein binding	Reg of GTRace act and microtubulo arg	3,100202
Sunns	Statimins	Goigi apparatus/perinuciear region of c	rtopiasm	Protein domain specific binding	Reg of Grease act and microtubule org	5,110615
Trimm 10B Fxc1	Translocase of inner mitochondrial membrane 10B	mitochondrial import inner memb comp	blex	metal ion binding	protein transport mitochondrial	3,109248
Asb4	Ankrin repeat and SOCS box containing 4 protein	cytosol /cytoplasm		ubiquitin protein transferase activity	protein autoubiqutination	2,996994
Nudt4	Nudix hydrolase	cytosol /cytoplasm		catalytic function	inositol phosphate metabolism	2,91962
Thra	Thyroid hormone receptor alpha	cytoplasm/cytosol/RNA pol II transc fac	tor complex	DNA binding transcription factor activity	neg reg of transcription by RNA pol II and WnT sig pathway	2,913547
Cpsf1	Cleavage and polyadenylation specific factor 1	mRNA cleavage and polyadenilation/sp	ecificity complex	enzyme binding;mRNA 3' UTR AU rich region binding	mRNA processing	2,902818
Dgat2	diacyl glycerol O acyl transf 2	endoplasmic reticulum/int comp memb	rane	diacylglyerol O acyl transferase act	Triglyceride biosynthetic process;lipid metabolism	2,861424
Znrt4	zinc and ring finger 4	cytoplasm/memb/endoplasmic reticulu		transferase and ubiquitin protein ligase activity	ubiqutin dependent protein catabolic process	2,860493
Bhinais	Dasic nellx loop nellx	cytoplasm/membrane/int comp memb		DNA binding transcript activator act. KNA poi il specific	regulation of transcription DNA replication	2,844749
Ciecsa Eaf23	C type lectin domain containing 5A	int part of membrane/nucleus		fibroblast growth factor receptor, protein binding	protein binding	2,820821
Spz1	spermatogenic leucine zinner 1	ortoplarm /puclour		DNA binding	DNA hinding transcription factor activity	2,812453
Ndufs4	NADH ubiquinone oxidorrreductae core subunit 54	mitochondrial resp chain complex l		NADH debydrogenase (ubiquinone) activity)	cAMP mediated signaling: Ovidation Reduction process	2,005200
Nuurse	WADT ubiquitone oxidor reductae core subunit 54			habit denyal ogenase (abiquitorie) activity)	envir mediated signaling, oxidation neddetion process	2,152510
Zbtb48	telomere Zinc finger associated domain cont 48	chromosome/nucleus/cytosol		DNA binding, metal ion binding	Transcription, DNA templated	2,782274
Stk22s1	testis specific serine kinase substrate serine	centriole/cytoplasm/cytoskeleton		protein kinase binding	negative regulator of protein kinase signalization	2,77109
Apol9b	apoliprotein L 9b	cellular component		lipid binding	biological process	2,755473
Ppm1d	protein phosphatase 1D	cytoplasm/cytosol/nucleus		catalytic act; cation binding; p53 signaling	DNA methylation; signal transduction by p53 mediator	2,710728
PrI3b1	prolactin family 3, subfamily b	extracellular region/extracellular space		hormone activity, prolactin receptor binding	positive regulation of JAK STAT signaling	2,598878
Pgm211	Phosphoglucomutase 2	cytoplasm		pnospnoglucomutase; transferase activity	carbonydrate metabolic process	2,562214
РКОРЗ		nucleus		protein binding, isomerase activity	protein peptidy provisionenzation	2,558778
Hmg20b	HMG box containing protein 20	nucleus		DNA binding transcription factor 4 way DNA junction	Chromatin org; neg reg of protein sumoylation	5,633444
lp6k2 Stbd1	inositol hexaphosphate kinase 2 Starch binding domain 1/glyconhamy cargo	cytoplasm/cytosol/nucleus		3'kinase; transferase act; nucleotide binding Carbohydrate, enzyme binding	inositol phosphate biosynthetic, post reg of apoptisis	4,025772
Scamp2	Starth binding domain 1/grycophagy targo	ext cellular matrix/membrane		carrier/protein transport	protein transport	3,963144
Olfr148	Olfatory reeptor 14	int comp membrane		G protein coupled receptor, olfatory receptor activity	G protein coupled recept signaling pathway	3,878472
Slc19a1	solute carrier family 19 member 3	Golgi apparatus/cytoplasm/endosome		folate anion transporter activity	vitamin transport	3,80426
Pax7	paired box transcription factor	intr comp membrane		DNA binding	regulation of transcription; positive reg of histone methylation	3,777645
Mrgpra5	member A5/G protein coupled receptor	lysosome/vacuolar memb/intracellular		nuclear import signal receptor, G protein coupled receptor act.	Signal transduction; G protein coupled receptor	3,740153
Kpna1	Karyopherin subunit alpha 3	cytplasm/mitochondrion	_	protein binding; protein transp activity	postsynapse to nucleus signaling pathway	3,680486
Cul4a	Cullin 4A	cytosol		ubiquitin protein ligase binding; ubiquitin mediated proteolysis	protein ubiquitination; cellular response to DNA damage	3,658435
Fah	Fumarylcetoacetato hydrolase	cytosol	DOWN	nuclear import signal receptor activity	metabolic pathways, metabolism of aminoacids	3,625094
Uba6	ubiquitin activating enzyme E2 like 2/	cytosol/cytoplasm		ubiquitin activity;ATP binding home binding: metal ion binding	protein ubiquitination; cellular protein mod process	3,599864
NgD	ADP ribosylation	cytopiasin/cytosol/indieds/indiear pore		neme binding, metarion binding		3,563347
Arl8b	factor/ like GTPase 8B	intr comp memb/plasma memb/membra	ane	GTP binding	cell cycle; cell division	3,510195
Entpd1	ectonucleoside triphosphate/diphosphohydrolase 1	nucleus/trans factor complex		Nucleotide phosphohydrolase activity	lymphoid cell antigen	3,508237
Trim23	tripartite motif containing 3	apical plasma memb/membrane/plasma	memb	ubiquitin, metal ion binding: transferase activity	proteasome mediated ubiqutin dependent catabolic process	3,492411
Gem	GTP binding protein/overexpressed in skeletal muscle	memb/plasma memb/int com memb		GTP binding	chromosome organization; signal transduction	3,45063
Lims1	LIM zinc finger domain/containing 1	cytoplasm		protein binding;protein kinase activity	cell matriz adhesion; cell cell adhesion	3,427456
Spred2	sprouty related, EVH1/domain containing 2	cytosol/membrane/plasma membrane		protein kinase binding	inactivation of MAPK; reg ulation of signal transduction	3,395787
Wbp11 Tofor 2	WW domain binding protein 11	cytosol/cytoplasm		WW doman binding	mRNA, rRNA processing	3,388238
Cintm1	u anscription alpha globin tactor	nucleus/chromosome			positive regulation of transcription by KNA pol II	3,28972
lltifb	interleukin 22b	extracellular region/extracellular space		cytokine activity	signaling by cytokines in immune system	3,283623
Dhhaf	sotiachlastome kinding aust-1- 5	blaten og statister i det statister i det st		moth data distance motio bind"	transaciation DNA tomplated, a William and a DNA days	2.26426
коорь	reunoplastomal binding protein 5	nistonye methylation ransferase/ nucleo	tion	neuryrated histone, protein binding	transcription DNA templated; Cellular response to DNA damage	3,264214
Srf	serum response factor	cytoplasm/nucleus/nuclear chromatin		DNA binding; chromatin binding	cell celladhesion; actin cytoskeleton organization	3,241575
Egr1	early growth response 1	cytoplasm/nucleus		metal ion, transcription factor binding	neg reg canonical WnT path; T cell diff; IL 8; IL 1 signalization	3,208
					pathway to mycophenolic acid	

Symbol	Gene				_	Fold
gene	name	Localization	В	Function	Process	change
gene	celute corrier family 22 member 15			keen suu our been a keen as a skar anti-itu.	lan kennank	4 407452
Jitz22015	inka box actin regulator 1	outoplasm / pucleus		notein kinase hinding	negative regulation of incretin serine threonine kinase inhibitor activity	4,407455
Glycam?	alycosylation dependent cell adhesion molecule 1	membrane	membrane ce		cell adheeion: response to bacterium	3 53/36/
Giycalliz	costomor proteincomplex subunit, commo 2			melaguarfunction		3,334304
CopgZasz	coatomer proteincomplex subunit gamma 2	cytoplasm / nucleus			molecuar function/biological process	3,47734
Aes	amino terminai ennancer or split	nucleus / transcription factor complex		transcription corepressor activity	cell fate determination; neurological development	3,46834
Psmd8	ATPase 8	cytosol / nucleoplasm / nucleus /proteasome reg	gulatory particle	molecular function	proteasome mediated ubiquitintependent proteolysis	3,403699
Stbd1	starch binding domain 1	cytosol / plasma membrane / endoplasmic reticu	ulum	protein binding ; enzyme binding; glycogen binding	autophagy, glycophagy; carbohydrate metabolism	3,352/52
Rny1	Rna Y1 small cytoplasmic Roassociated	nucleus/chromosome		DNA binding	DNA replication initiation; nuclear DNA replicaton	3,333531
Cry2	cryptochrome circadian regulator 2	cytosol / extracellular region / nuclear speck / nu	icleus	protein binding; phosphatase binding; DNA binding	Circadian rhythym; transcription, DNA templated	3,323612
Atf7ip2	activating transcription factor 7 interacting protein 2	nucleus		molecular function	biological process	3,296941
Grik5	glutamate ionotropic receptor kainate type subunit 5	cell junction / dendrite / endoplasmic reticulum		glutamate receptor; signaling receptor act/ion transport	ion transport; receptor clustering	3,278964
Tal1	TAL bHLH transcription factor 1, erythroid diff. factor	nucleus / nucleoplasm / nuclear chromatin		E box binding; protein binding	Erythrocyte, myeloid differentiation; negative regulation of transcription	3,24721
Rn18s	18 S ribosomal RNA	nucleolus/ribosome		Serves as the precursor for the 18 S, 5.8S and 28S rRNA	Serves as the precursor for the 18 S, 5.8S and 28S rRNA	3,216225
Stat2	signal transducer and activator of transcription 2	cytosol / nucleoplasm / plasma membrane		DNA binding transcription factor act/ubiquitin protein binding	Type I IFN signaling pathway, defense response to virus	3,147885
Amotl2	angiomotin like 2	apical plasma membrane / cytoplasmic vesicle		protein binding	Wnt signaling pathway	3,142668
Sfrp1	secreted frizzled related protein 1	extracellular space / plasma membrane		WnT proteinbinding heparin binding	WnT signaling pathway: actin cytoskeleton org	2,974467
Tg	Thyroglobulin	extracellular region		hormone biosynthetic process; regof signaling receptor act.	Transcytosis; hormone biosynthetic process	2,95789
Kcnj15	ATP sensitive inward rectifier potassium channel 15	integral comp membrane/plasma membrane		potassium channel act; protein binding	ion transport; regulation of ion transport	2,904019
Unc5c	netrin receptor UNSC	cell junction /integral comp memb/plasma mem	b	netrin receptor act;protein binding	apoptotic process; netrin signalization pathway	2,896831
Grhpr	glyoxylate reductase; hydroxypyruvate reductase	cytosol/cytoplasm		NAD binding; oxidorreductase activity	dicarboxylic acid met; OxidoReduction process	2,889236
Ccdc127	coiledcoil domain containing protein 127	cellular		molecular function	Biological process	2,840705
Cobl	protein cordon blue	colocalizes with actin filament/cell cortex/plasm	e memb	actin binding: protein binding	actin filament process	2.838225
Nol12	nucleolar protein 12	nucleolus		rBNA binding	positive regulation of cell proliferation; neg reg of apoptotic process	2,835455
Pdyn	Prodynorphin/proenkephalin _B	extracellular region cytoplasm/plasma membran	e/synaptic vesicle	neuropentide activity opioid pentide activity	neuronentide signaling nathway	2 829673
Kbtbd4	Kelch repeat and BTB(PO2) domain containing 4	dendrites/membranes/extracellular region cytop	blasm	molecular function	cell differentiation	2 79219
Aph1a	gamma secretase subunit APH	Golgi apparaturs/endoplasmi reticulum /mitoch	ondrion	endopeptidase activity; protein binding	Notch signaling pathway; prptein processing	2,75215
Ndufv3	NADH dehidrogenase (ubiquinone) flavoprtoein 3	membrane/mitochondrial inner memb/nucleopl	asm	catalytic activity	mitochondrial ATPs synthesis coupled electron transport; OxRed	2,751420
	mitocondrial	mitochondrion				2,735045
						6.047000
Hmg20b	high mobility group (HMG) 20B	nucleus		DNA binding	cell cycle; chromatin org; neg reg of protein sumoylation	6,317998
Purg	purine rich element binding protein G	cytoplasm / extracellular region / nucleus		DNA binding; purine rich neg reg element binding	biological process	6,308604
Dmp1	dentin matriæcidic phosphoprotein	cytoplasm / membrane / mitochondrion / nucleu	21	Hsp70 protein binding; extracellular matriz binding	extracellular matrix organization	5,699881
Tcfcp2	transcription factor CP2like 1	cytoplasm / plasma membrane		DNA binding; transcription factor binding	mRNA transcrip by RNA pol II, Transcrip DNA templated	5,629522
Marcksl1	MARCKSlike	nucleus / nucleoplasm		actin binding ; calmodulin binding	positiive regulation of cell proliferation	4,47293
Hoxb13	homeobox B13	nucleus / nucleoplasm / catalytic step 2 spliceoso	ome	DNA binding methyl CpG binding	regulation of transcription DNA templated: regulation of cell growth	4,385222
Rbmx	RNA binding motif protein Xlinked	cytoplasm / cytosol / nucleus		RNA binding; mRNA binding	mRNA processing; cellular response to IL 1	4,34581
Id2	inhibitor of DNA binding 2	extracellular region / extracellular space		ion channel binding; protein dimerization activity	Peyer's patch develoment: NK cell diff; neg reg of B cell diff	4,271447
Pri7a2	prolactin family 7, subfamily a, member 2	nuclear chromatin / nucleosome / nucleus		hormone act; prolactin receptor binding	positive regulation of JAK STAT cascasde; pos reg of cell proliferation	4,135262
Hist2h2ab	histone cluster 2, H2ab	mitochondrion / mitochondrial outer membrane		DNA binding; protein dimerization	Chromatin organization	4,1102
Bphl	biphenyl hydrolase like	endoplasmic reticulum and integral component	of membrane	hydrolase activity	Metabolism; biological oxidation	3,994193
Tmem14a	transmembrane protein 14A	cellular component		molecular function	negative regulation of apoptotic process;	3,992781
Тсар	titin cap	Z disc		FATZ, channel and titin Z domain binding	sarcomere organization; skeletal muscle contraction	3,894461
Cxcl16	C motif chemokine ligand 16	integral component of membrane		chemokine activity;LDL and scavenger receptor activity	T cell chemotaxis; cellular response to LPS	3.720884
Parp6	poly(ADP ribose) polymerase family member 6	intracellular		NAD+ ADP ribosyltransferase activity	protein ADP ribosylation	3,717596
Usp42	uniquitin carboxyl terminal hydrolase 42	cellular component		cysteine type endopeptidase activity	regulation of apoptotic process; protein deubiquitination	3,683714
Klhl5	kelch like family member 5	cytoplasm/ cytosol cytoskeleton		molecular function	peptide crosslinking	3,682623
Elf1	E74 like ETS transcription factor 1	nucleoplasm / nucleoplasm		DNAbinding transcription factor activity	regulation of cytokine production; neg reg of T cell receptor signaling path	3,620549
Tyms	thymidylate synthetase	cytoplasm / mitochondrial inner membrane / nu	icleus	thymidylate synthase activity	dTTp_dTMP_biosynthetic process	3,613085
PrI3c1	prolactin family 3, subfamily c, member 1	extracellular region / extracellular space		hormone activity; prolactin receptor binding	positive regulation of JAK STAT cascade and cell proliferation	3,593588
Nts	neurotensin	transport vesicle / extracellular region		neuropeptide binding; hormone activity	regulation of signaling recept activity	3,552457
Dtx2	deltex E3 ubiquitin ligase 2	cytoplasm / nuclear membrane / nucleoplasm		protein binding and metai ion binding; transferase activity	NOTCH signaling pathway	3,529861
Krt35	keratin type cuticular Ha5	intermediate filament		structural molecular activity	keratinization and keratinocyte differentiation: peptide cross linking	3.464097
Gcap14 Coser2	serine rich coiled coil domain containing protein 2	microtubule cvtoskeleton		microtubule binding	microtubule bundle formation	3,454172
Cvp4f15	cytochrome P450, family 4, subfamily f polynentide 5	cytoplasm membrane /int comp membrane		heme binding	Ficosanoid: leukotriene and Cytochrome P450 pathways	3 406029
Chv3	nrotein chibby homolog 3	colocalizes with centricia / Not cillary basel bed		molecular function	NOT neg reg of WnT Signaling nathway	3,400029
Spr3	small proline rich protein 3	Golgi apparaturs/ cytonlasm/ornified_envelope		structural molecular activity	keratinization: keratinocyte diff and pentide cross linking	3.362478
		, , , , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·	-, 170

Symbol	Gene	Localization	Localization		Process	Fold
gene	name C					change
Clec5a	C	cell surface/cytosol/plasma memb		protein coding	rRNA	4 319691
Rn18s	RNA ribosomal 18 S			structural	signaling	3 657197
Abcc8	ATP hinding cassette sub family C member 8	synaptic ves mem/plasma mem/ion c	hannel	transporter	mRNA splice selection	3 656106
Luc7l	putative RNA binding protein Luc7 like 1	nucleus/U1 snRNP		RNA binding	B:T cell/ERK1:ERK2 signaing pathway	3 514455
Mapk1	mitogen activated protein kinase 1	Cytoplasm/endosome/nucleus		transferase act	immune system process	3,504118
Tnip2	TNFAIP3 interacting protein 2	cytplasm/cytosol/nucleus		protein coding	immune system process	3,480367
Yipf1	protein YIPF2 domain family	endosome/int comp memb/transport	vesicular	protein coding	Rab GTPase binding	3,438103
Foxa1	hepatocyte nuclear factor 3 alpha	nucleus/microvillus/fibrilar center		protein coding	response to stimulus	3,42924
Pstpip1	proline serine threonine phosphatase interacting protein 1	plasma memb/cytoplasm/cytoskeleto	n	transferase act	signaling	3,375711
Aktip	AKT interacting protein	cytpplasm/plasma memb/FHH comple	ex	transcription	immune system process	3,338202
Hoxc12	homeobox protein Hox C12	cellular component/nucleus		cytoskeletal	cell death	3,231466
Epn3	epsin 3	clathrin coated pit/cytoplasm/nucleus	5	protein coding	nucleic acid templated transcription	3,218709
Gcat	2 amino 3 ketobutyrate coenzyme A ligase, mitochondrial	mitochondrial memb/nucleus/mitoch	ondrion	DNA binding	biological process	3,18704
Tyrp1	5,6 dihydroxyindole 2 carboxylic acid oxidase	Clathrin coated/endosome/int comp	memb	lipid binding	metabolic process	3,175419
Ppil5 (Lrr1)	leucine rich repeat protein 1	difs cellular locations		glycine C acetyl	cell differentiation	3,166818
Nr2e1	nuclear receptor subfamily 2 group E member 1	nucleus	UP	oxidoreductase	molecular function	3,162646
Rbm9	RNA binding protein fox 1 homolog 2	cytoplasm/cytosol/nucleus		protein conding	negative regulation of apoptotic process	3,121603
Taf12	transcription initiation factor TFIID subunit 12	nucleus/transcript factor TFIID		DNA binding	RNA splicing	3,111475
Luzp1	leucine zipper protein 1	nucleus		RNA binding	protein metabolic process	
Brd3	bromodomain containing protein 3	cellular component nucleus		transcription	biological process	3,034095
Bhlhe22	Basic helix loop helix family member 22	cytoplasm/membrane/int comp mem	b	DNA binding	system development	3,028504
Col6a1	collagen alpha 1(VI) chain	extracellular matrix/collagen trimer		molecular function	chromatin organization	3,00171
Rbmy1a1	RNA binding motif protein, family 1 member A1	nucleus/ribonucleoprotein complex		molecular function	system development	2,977725
Acaa1a	3 ketoacyl CoA thiolase A, peroxisomal	peroxisome/mitochondrion/int mem	bound	chromatin binding	chromatin organization	2,975673
Rcan2	calcipressin 2	cytoplasm		protein binding	cell differentiation	2,962502
R3ndm2	R3H domain containing 2	cellular component/nucleus		transcription	Ras protein (SMAD protein signaling)	2,960735
Jun		cytosol/nucleus/transcript factor AP1	complex	transcription	monocyte differentiation	2,975673
Gsc2	homeobox protein goosecoid 2	nucleo		transcription	nucleic acid templated transcription	6,03057
Wnt3	proto oncogene Wnt 3	cytoplasm/extra matrix/ext space		signaling receptor binding	signaling	5,606744
Hnrnpc	heterogeneous nuclear ribonucleoproteins C1/C2	actin cytoskeleton/nucleus/cytosol		phosphatase binding	biological process	5,384634
Neu2	sialidase 2	cytoplasm/cytosol/intracellular mem		hydrolase act/sialidase act.	carbohydrate, lipid metabolism	5,182497
Otud7b	OTU domain containing protein 7B	cytoplasm/nucleus		hydrolase	lipid metabolic process	5,078586
Tat1	transcription initiation factor TFIID subunit 1	nucleus/transc factorcomplex		DNA binding	biological process	5,07364
Ep400	EIA binding protein p400	nucleus(nuclear speck)		nydrolase		5,062969
Ube2e1		nucleus/ubiquitin ligase complex		transferase	immune system process	5,039832
ZIM2	Zimz zinc finger imprinted 2	Cellular component		molecular function	response to stimulus	4,921464
ACVF1 Epr1	fMot Leu Pho recentor	int comp momorph (mombrong	ine	signaling receptor activity	inflammation	4,903474
Paot1b	rotinoic acid early inducible protein 1 beta	Colgi apparaturs (appage) (aptagla		signaling receptor activity	hindenination	4,900078
Raelib		Goigi apparaturs/caveoia/cytoske		signaling receptor binding	biological process	4,0499
Arntl2	ary hydrocarbon receptor nuclear translocator like protein z	cytoplasm/nucleus/nucleolo	-	DNA binding	biological process	4,784523
Adam39	a disintegrin and metallopeptidase domain 39	Cellular component	O(W)	molecular function	signaling	4,755927
Cd209c	CD209 antigen like protein C	Cellular component		carbohydrate binding	homeostatic process	4,755472
V1rc5	vomeronasal 1 receptor, C5	Cellular component		signaling function	mmune system process	4,570314
Psme2b ps	protease (prosome, macropain) 28 subunit beta B	Cellular component		molecular function	nucleic acid templated transcription	4,528281
Cycs	Cycs cytochrome C, somatic	cytosol/nucleus/mitochondrial		oxidoreductase	biological process	4,408696
Sgpl1	sphingosine 1 phosphate lyase 1	endoplasmic ret/membrane/int mem	ibrane	protein coding	biological process	4,331022
Sorcs3	VPS10 domain containing receptor SorCS3	membrane/int com of memb		protein binding	signal transduction	4,311266
Kng1	kininogen 1	extracellular region /ext space		enzyme regulator	homeostatic process	4,294935
Mtertd2	transcription termination factor 4, mitochondrial	cytosol/mitochondrion		RNA binding	establishment of localization	4,294131
KCNJ16	Inward rectifier potassium channel 16	int comp memb/plasma memb		transporter	establishment of localization	4,265176
Passz Catfa	decaprenyi dipnosphate synthase subunit 2	cytosol/mitochondrion/trans comple	x	transferase	lipid metabolic process	4,247797
Cnttr	ciliary neurotrophic factor receptor subunit alpha	membrane/plasma memb/recep com	1	signaling receptor activity	response to stimulus	4,23/354
Hmg20b	nign mobility group (HMG) 20B	nucleus/nucleoplasm/nuclear bodies			nucleic acid templated transcription	4,021251
vps41	vacuolar protein sorting associated protein 41 homolog	goigi app/colocalizes with clathrin		cytoskeletal protein binding	cellular component organization	4,013891

Fig. (3). Functional analysis of the most up and down regulated genes using Reactome data base (A) and expressed also as heat maps constructed (B) from the Z scores of the genes most up and down regulated ($\leq 2 \text{ SD}$)(P ≤ 0.05) from TST (+/-) (A), positive (B) cattle from Zacatecas and Positive from Coahuila State (C) Mexico.

3A). Second, in the cattle infected with M. bovis (TST+) from Zacatecas, Mexico (Figure 3B), we found that these genes impact for example in NOTCH 4 (p-value of 0,025) and/or WnT signaling (p-value of 0,03); regulation of IFN-alpha/beta (STAT2)(p-value of 0,056); G-protein gated potassium channels (p-value of 0,055) (Figure 3II, A-B). While most of the down-regulated genes also influence important pathways such as, RUNX-1 transcription of genes involved in interleukin (p-value of 0,015); of BCG signaling (p-value of 0,015); activity of NOTCH 4 transmits signal to the nucleus (p-value of 0,066); chemokine receptor bind chemokines (p-value of 0,098); chromatin organization (p-value of 0,017) (Figure 3II, A-B). In third place, from the set of genes of infected cattle with M. bovis (TST +) from Coahuila Mexico (Figure **3III A-B**) that are most up and down-regulated were also performed using the Reactome bioinformatics database [48](Figure 3III, A-B). From this analysis, we found that a small set of genes, Mapk1, Tnip2, Abcc8, Nr2e1, Foxa1 have also an impact in key host immune response pathways; IL-17 signaling (p-value of 6.84e-4), Myd88 cascade in endosome (p-value of 0,02), and in plasma membrane (p-value of 0,001); all the TLR 1, 2, 3 -10; TRAF 6 mediated induction of NFK β and MAP kinase (pvalue of 0,001); MAP kinase activity (p-value of 4.84 e-4); activity of the AP-1 family of transcription factors (p-value of 2.81 e-4) (Figure **3III**, upper panel) Furthermore, and in marked contrast a more larger set of genes were most downregulated, like Taf1, Cycs, Ep400, Fpr, Mterfd2, Otud7b. Interestingly, IL10 (p-value of 0,016) and/or IL-6 (p-value of 0,031) as well as the TNFR-1 produced pro-apoptotic signaling (p-value of 0,031); cellular response to stress (p-value of 0,026); apoptotic mediated response (p-value of 0,02); RNA Table 3. Functionality analyses of genes most up and down regulated accordingly to Reactome data base and p values which express the probability that the extent of change of a gene (up or down) be affected in determined reaction (pathway step) in reactor TST (+/-) (A), positive TST+ cattle (B) from Zacatecas and TST (+) from Coahuila State (C) Mexico.

A. Reactor (TST(+/_). Zacatecas, Zac. Mexico									
Up regulated s	ymbol gene	fold change	pvalue	Down regulated s	ymbol gene	fold change	pvalue		
Inositol phosphate metabolism	Nudt4	2,02	0,007	Interferon alpha/beta signaling	Egr1/Ip6k2/Kpna1	-3,21	0,0005		
Tryglycerides biosynthesis	Dgat2	2,86	0,036	interferon signaling	Egr1/Ip6k2/Kpna1	-3,21	0,001		
Glycogen synthesis	Pgm2l1	2,56	0,041	Cytokine signaling in immune response	Egr1/Ip6k2/Kpna1	-3,21	0,064		
Glycogenolysis	Pgm2l2	2,56	0,041	inracellular oxygen transport	Ngb	-3,56	0,01		
Phospholipase C mediated cascade FGFR1	FGF23	2,81	0,046	FGF1.1 modulation of FCFR1 signaling	Spred2	-3,39	0,029		
FGR1c ligand binding and activation	FGF23	2,81	0,046	Cell extracellular matrix interactions	Lims1	-3,43	0,039		
FG FR1.1 modulation of FGR1 signaling	FGF23	2,81	0,031	Netrin mediated repulsion signal	Uncsc	-3,26	0,021		
PI-3K cascade FGFR3	FGF23	2,81	0,045	Apoptosis induced DNA fragmentation	Kpna1	-3,68	0,027		
Processing of intron less Pre-mRNA	Cpsf1	2,9	0,045	Phenylalanine and Tyrosine catabolism	Fah	-3,62	0,084		
Actvity of phototransduced cascade	Pde6y	3,41	0,028	Neddylation	Cul4a/Rbb5/Kpna1	-3,66	0,089		
		B.	Rositive	(TST(+). Zacatecas, Zac. N	exico				
Regulation of IFN α/β signaling	Stat 2	3,147	0,056	RUNX1 regulates transcription of genes in IL- signaling	Elf1	-3,62	0,015		
Signaling by WNT	Aes	3,468	0,02	RUNX1 regulates transcription of genes in BCR signaling	Elf1	-3,62	0,015		
NOTCH 2 activity/tranmision nucleus	Aph1a	2,791	0,047	Act NOTCH 1 transmits signal to the nucleus	Dtx2	-3,53	0,066		
NOTCH 4 activity transmision nucleus	Aph1a	2,791	0,025	Signaling by NOTCH 1	Dtx2	-3,53	0,164		
Signaling by NOTCH 4	Aph1a	2,791	0,016	Peptide signal receptors	Cxcl16	-3,72	0,07		
Non Canonical act of Notch 3	Aph1a	2,791	0,016	Chemokine receptor bind chemokine	Cxcl16	-3,72	0,098		
G-protein gated potassium channel	Kcnj15	2,904	0,055	Metalloprotease DBS	Hist2h2ab	-4,11	0,066		
Act of Ca+2 permeable Kainate receptor	s Grik5	3,278	0,027	Deubiquitination	Hist2h2ab	-4,11	0,066		
Netrin mediated repulsion signals	UncSc	2,894	0,021	ECM proteoglycans	Dmp1	-5,7	0,126		
Circadian clock	Cry2	3,323	0,019	Chromatin organization	Hist2h2ab	-4,11	0,126		
		C	. Rositive	(TST(+). Coahuila, Mexico					
Toll like receptor cascade (3-10)	Mapk1	4,504	0,001	IL-6 type cytokine receptor ligand interaction	Cycs/Fpr1	-4,41	0,037		
IL-17 signaling	Mapk1/Tnip2	3,504	0,0007	IL-10 signaling	Fpr1	-4,9	0,016		
TRIP (TICAM1) mediated TLR4 signaling	Mapk1/Tnip2	3,504	0,002	TNFR induction of pro-apoptotic signaling	Otud7b	-5,07	0,031		
TRAF6 mediated induction of NFKβ	Mapk1/Tnip2	3,504	0,001	RNA polymerase II transcription initiation RNA polymerase II transcription initiation and	Cycs	-4,41	0,006		
MAP Kinase activation	Mapk1/Tnip2	3,504	0,0005	promoter clearance	Taf1	-5,07	0,006		
Myd88 cascade initiation on endosome	Mapk1/Tnip2	3,504	0,001	01 Cytochrome c mediated apoptotic response Cycs		-4,41	0,015		
Myd88 cascade initiation on plasma mer	mb Mapk1/Tnip	3,504	0,002	apoptosis factor-mediated response Formyl sulfide receptors bind formyl sulphids ar	Cycs	-4,41	0,02		
Act of the AP-1 family of transcription fa	ctors Mapk1	4,504	0,0003	many other ligands	Fpr1	-4,9	0,034		
Toll like receptor TLR1: TLR2 cascade	Mapk1/Tnip2	3,504	0,004	Potassium channel transport	Kcnj16 Cycs/Fpr1/Ep400/Ub	-4,26	0,009		
Myd88 independent TLR4 cascade	Mapk1/Tnip2	3,504	0,002	Cellular response to stress	e2e1	-4,41	0,026		

polymerase II transcription initiation and promoter clearance (p-value of 0,007) (Figure **3III**, A B).

DISCUSSIÓN.

The *in vivo* gene expression pathway profile from naturally infected cattle with *M. bovis* from Mexico, two close geographical states (Zacatecas, and Coahuila State) by using the microarray technology, have allowed to determined a set of signaling pathways that are printed through the host-pathogen interaction. We propose that the data obtained in this study might be used to further explore a scanning chip for diagnostic in bovine tuberculosis.

In human tuberculosis, it has been shown that transcriptional signature is printed in the type I IFNs signalization pathways at the level of innate immune response (neutrophils) [49]. Furthermore, it was shown that Eicosanoid and lipid metabolism are down regulated by type I IFNs leading to exacerbation of disease but at the same time could be used as host-therapy [49]. Therefore, this study is noteworthy since it revealed that biomarkers of disease progression can impact in different pathways and these can be used as multi-target therapy [38] instead of a dominant single target gene. In bovine

tuberculosis, the scenary is different. Most of the studies have been focused in the determination of expression profiles after PBMCs stimulation with PPDb and/or infection followed by BCG treatment [36, 38, 43, 45, 47]. In these studies by using an extensive bioinformatics study, it was demonstrated that canonical pathways and genes are also involved in M. bovis infection, and for each pathways it was selected genes that were up or down regulated [46]. In another set of data, it was reported that IL-22 is a dominant biomarker [40]. Not further studies were made to explore the potential use of this dominant IL-22 as a predictor of protection [40]. We think that in vitro studies [41-46] are remarkable and have given clues that potentially can be extrapolated to cattle [47], but still are necessary to approach the disease from direct in vivo studies. Therefore, in this work, we focused precisely to determine in vivo gene expression pathway profile of cattle infecrted with M. bovis from Mexico. From the data obtained using microarray and functional analysis (Figure 2-3 A-C)(Table 2-3 A-C)(Reactome Database)[48](Figures 3A-C), we found that a set of genes (n= 27) modulated up and down (P < 0.05) are printed by M. bovis infection of cattle from Mexico. Among them, it can be mentioned, genes that encode transcription factors, binding (DNA, RNA, proteins, carbohydrates, metalions, lipids, peptides), enzymes activities, catalytic roles, carriers, co-factors and molecular function (Figures 2A-C; Table 2A-C) Genes that participate in key host pathways such as innate and adaptive immune responses, WnT and NOTCH signaling, TLR cascade (1-10); Myd88, MAPK kinase activity, autophagy, glycophagy, metabolism (inositol, tryglycerides, glycogen, carbohydrates, eicosanoids, arachidonic acids, aminoacids), apoptotic mediated response, G-protein receptor signalization, RNA Pol II initiation, chromatin organization, cell cycle, oxido-reduction, G-mediated potassium channels process (Table 2A-C) cell matrix interactions. T his in vivo study without in vitro Ag stmulation of PBMCs from uninfected and infected cattle with M. bovis is highly coincindent with those data from in vitro studies [41 -46], meaning that it is possible to develop a ante-mortem molecular diagnostic under these experimental settings reported in this study. Furthermore, we think that is noteworthy that we found that interferon alpha/beta signaling (STAT2)(p value of 0,056) as well as IL-17 signaling (p value of 6.8 e-4) pathways were printed from M. bovis in vivo (Tables 2 A -C)(Figures 2 A-C) Autophagy process as well as the eicosanoid pathways were importantly impacted by this pathogen giving rise to a set of pathways-encoded by genes that might represent candidate biomarkers of the natural M. bovis infection (Figure 3A-C) Thus, the data obtained from this analysis highlight a proposal of a pattern based in the pathway set of the transcriptional printing of M. bovis. Therefore, it could be translated in the development of 22 genes most up regulated (representing key pathways of the host response to M. bovis infection) while 27 genes might represent the most down regulated (Figure 3A-C; Table 3A-C). We think that even it would possible to potentially define the spectrum of the infectious disease. In summary, until our knowledge, this a first report of the in vivo pathway profile printed by M. bovis in cattle from Mexico.

ACKNOWLEDGMENTS

The authors are grateful for the financial support from the Federal Council of Public Education Secretary throughout programs: PRODEP and PERFIL PRODEP SAGARPA-PIDETEC 2015 and SNI CONACYT. We are in debt with the Microarray Unit of the Institute of Cellular Physiology (IFC) - UNAM, Mexico City; Dr. Noe Macias (UAA, (Center of Sciences, laboratory of Neuroendocrinology, University Autonome of Aguascalientes. Aguascalientes, Ags. Mexico); Dr Juan Manuel Favela -Hernandez (Institute Avicena, Campus Torreon, Coahuila) and Dr Isaias Balderas-Renteria (UniversityAutonome of Nuevo Leon, Monterrey Nuevo Leon. Mexico) for recollecting blood samples and fruitful discussion.

CONFLICT OF INTEREST

There is no conflict of interest.

REFERENCES

- Grange JM. Mycobacterium bovis infection in humans beings. Tuberculosis (Edinb) 2001; 81: 71-77
- [2]. Cassidy JP. The pathogenesis and pathology of bovine tuberculosis with insights from studies of tuberculosis in humans and laboratory animal models. Vet Microbiol 2006; 112: 151-161.
- [3]. Thoen Ch., LoBue PA. And de Kantor IN. The importance of M. boris as a zoonosis. Vet Microbiol 2006; 112, 339-345
- [4]. Waters WR, Palmer MV, Thacker TC, Davis WC, Sreevatsan S, Coussens P, Meade KG, Hope JC et al., Estes DM. Tuberculosis

Immunity: Opportunities from studies with Cattle. Clin Dev Immunol 201; 2011: 768542. Rev.

- [5]. World Organization for Animal Health.- Bovine tuberculosis. General disease information sheets. Final Report. www.oie.int/wahid-prod/ public.php?page=disease_status_detail & disease_id=32. 2012. 1-6
- [6]. Garnier T, Eiglmeier K, Camus JC et al. The complete genome sequence of M. bovis. Proc Natl Acad Sci U S A. 2003; 100:7877-82.
- [7]. Hewinson RG, Vordemeier HM, Smith NH, Gordon SV. Recent advances in our knowledge of M. bovis: a feeling for the organism. Vet Microbiol. 2006; 112: 127-139
- [8]. Abalos P, Retamal P. Tuberculosis: re-emerging zoonosis? Rev. Sci. Tech. Off. Int Epiz 2004; 23: 583-594
- Biet F, Boschiroli ML, Thorel MF, LA Guilloteau. Zoonotic aspects of M. bovis and M. avium-intracellular complex (MAC). Vet Res 2005; 36: 411-436
- [10]. Milian-Suazo F, Salman MD, Ramirez C, Payeur JB, Rhyan JC, Santillan M. 2000. Identification of tuberculosis in cattle slaughtered in Mexico. Am. J. Vet. Res., 2000; 61: 86-89
- [11]. Neill SD, Bryson DG, Pollock JM. Pathogenesis of tuberculosis in cattle. Tuberculosis. 2001; 81: 79-86
- [12]. Zendejas Martínez H, Milián Suazo F, Cuador Gil Q et al. Spatial epidemiology of bovine tuberculosis in Mexico. Vet Ital 2007; 43. 629-634
- [13]. Phillips CJ, Foster CR, Morris PA, Teverson R. Genetic and management factors that influences the susceptibility to cattle to M. bovis infection. Anim. Health. Res. Rev. 2002; 9: 3-13
- [14]. Ritacco V, Lopez B, De Kantor IN et al. Reciprocal cellular and humoral immune responses in bovine tuberculosis. Res Vet Sci. 1991; 50:365-367
- [15]. Flynn JL and Chang. Immunology of Tuberculosis. Annu. Rev. Immunol. 2001; 19:93-120
- [16]. Welsh MD, Cunningham RT, Corbett DM, Girvin M, McNair J, Skuce RA, Bryson D G and Pollock JM. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunology 2005; 114:101-111.
- [17]. Abebe F. Is Interferon-gamma the right marker for Bacillus Calmette-Güerin-induced immune protection? The missing link in our understanding of tuberculosis immunology. Clin. Exp. Immunol. 2012; 169: 213-219
- [18]. Tascon RE, Stavropoulos S, Lukacs KV, MJ Colston. Infect. Immun. 1998; 66: 830-834
- [19]. Russell DG. Who Puts the Tubercle in Tuberculosis?. Nature Rev. Microbiol. 2007; 1:39-47
- [20]. Koul A, Herget T, Klebl B, Ulrich A. Interplay between mycobacteria and host signaling pathways. Nat. Rev. Microbiol. 2004; 2: 189-202
- [21]. Buddle BM, Wedlock DN, Denis M, Skinner MA. Identification of immune response correlates for protection against bovine tuberculosis. Vet Immunopathol 2005; 108: 45-51
- [22]. Hewinson RG, Vordemeier HM, BM Buddle. Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics. Tuberculosis 2003; 83: 119-130
- [23]. Vordermeier M, Hewinson RG. Development of cattle TB vaccines in the UK. Vet Immunol Immunopathol 2006; 112:38-48.
- [24]. Palmer MV, Waters WR, Thacker TC, Greenwald R, Esfandiari J, KP Lyashchenko. Effects of different tuberculin skin testing regimens on gamma interferon and antibody responses in cattle experimentally infected with M. bovis. Clin. Vaccine Immunol 2006; 13: 387-394
- [25]. Wood PR, Jones SL. Bovigam: an *in vitro* cellular diagnostic test for bovine tuberculosis. 2001. Tuberculosis (Edinb) 81:147-55.
- [26]. Soysal A, Millington KA, Bakir M et al. Effect of BCG vaccination on risk of M. tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. The Lancet 2005; 366: 1443-1451
- [27]. Ewer K, Millington KA, Deeks J, Alvarez I, Bryant G. Dynamic antigen-specific T-cell responses after point-source exposure to M. tuberculosis. Am. Journal of Resp. and Critical Care Med. 2006; 174:831
- [28]. Vordermeier HM, Chambers MA, Buddle BM, Pollock JM, Hewinson RG. Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J. 2006; 171: 229-244
- [29]. Vordermeier HM, Villareal-Ramos B, Cockle PJ, et al. Viral booster vaccines improve M. bovis BCG-induced protection against bovine tuberculosis. Infect Immun. 2009; 77: 3364-3373
- [30]. Villarreal-Ramos B, Berg S, Chamberlain L, McShane H, Hewinson RG, Clifford D, Vordermeier M. Development of a BCG challenge model for the testing of vaccine candidates against tuberculosis in cattle. Vaccine. 2014; 32: 5645-9

- [31]. Conlan AJ, Brooks Pollock E, McKinley TJ, Mitchell AP, Jones GJ, Vordermeier M, Wood JL. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput Biol. 2015; 11: e1004038
- [32]. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T). Method. Nat Protocols. 2008; 3: 1101-1108
- [33]. Mortazavi A, Williams BA, McCue K, Schaffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods. 2008; 5: 621-628
- [34]. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprenhensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 28: 27-30
- [35]. Malone JH and Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011; 31: 9-34. Rev.
- [36]. Heller MJ. DNA microarray technology: devices, systems, and applications. Ann. Rev. Biomed. Eng. 2002; 4:129-153
- [37]. Conway T. Microarray expression profiling: capturing a genome wide portrait of the transcriptome. Mol. Microbiol. 2003; 47: 879-889
- [38]. Berry PRM, Graham MCh, McNab WF et al. Letter to Nature. 2010; 466: 973-979
- [39]. Meade KG, Gormley E, O'Farrelly CD, Park S, Costello E, Keane J, Zhao Y and MacHugh DE. Antigen stimulation of peripheral blood mononuclear cells from Mycobacterium bovis infected cattle yields evidence for a novel gene expression program. BMC Genomics 2008 9:1-17
- [40]. Bhuju S, Aranday-Cortes E, Villareal-Ramos B, Xing Z, Singh M, HM Vordemeier. Global Gene Transcriptome Analysis in Vaccinated Cattle Revealed a Dominant Role of IL-22 for Protection against Bovine Tuberculosis. 2012; 8: e1003077
- [41]. Khatri B, Fielder M, Jones G, Newell W, Abu-Oun M and Wheeler PR. High Throughput Phenotypic Analysis of M. tuberculosis and M. bovis Strains Metabolism Using Biology Phenotype Microarrays. PLoS ONE.2013; 8:1-15
- [42]. McLoughlin KE, Nalpas NC, Rue-Albrecht K et al. RNA-seq Transcriptional Profiling of Peripheral Blood Leukocytes

from Cattle Infected with $\, M.\,$ bovis. Frontiers in Immunology. 2014; 3:1-12 $\,$

- [43]. Golby P, Villarreal-Ramos B, Dean G, Jones GJ, Vordermeier M. MicroRNA expression profiling of PPD-B stimulated PBMC from M. bovis -challenged unvaccinated and BCG vaccinated cattle. Vaccine. 2014; 32:5839-44
- [44]. De Ketelacre A, Goossens K, Peelman Í, C Burvenich. 2006. Technical note: validation of internal control genes for genes expression analysis to bovine polymorphonuclear leukocytes. J. Dairy Sci. 89: 4066-4069
- [45]. Rue-Albrecht K, Magee DA, Killick KE, Nalpas NC, Gordon SV and Machugh DE. Comparative functional genomics and the bovine macrophage response to strains of the Mycobacterium genus. Developments in Bovine Immunology-An Integrated View. 46 and activate NKT cells in cattle. Clin Vaccine Immunol. 2015; 22:178-184
- [46]. Cheng Y, Chou CH, y Tsai HJ. In vitro gene expression profile of bovine peripheral blood mononuclear cells in early Mycobacterium bovis infection. Exp. and Therapeutic Med.2015; 10: 2102 -2118
- [47]. Aranday-Cortes E Hogarth PJ, Kaveh DA, Whelan AO, Villarreal Ramos B, Lalvani A, and Vordermeier HM. Transcriptional Profiling of Disease-Induced Host Responses in Bovine Tuberculosis and the Identification of Potential Diagnostic Biomarkers. PLoS ONE. 2012; 7:1-11
- [48]. Fabregat A, Sidiropoulos K, Viteri G, Forner G, Marin-Garcia P, Arnau V, Hermjakob H. Reactome pahway analysis: A high performance in memory approach. BMC Bioinformatics. 2017; 18: 142
- [49]. Mayer-Barber DK, Andrade BB, Oland DS et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014; 511: 99-115